没有找到合适的产品?
联系客服协助选型:023-68661681
提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
对于业务分析的不同阶段,企业需要在各个步骤中处理大量数据。根据工作流程的阶段和数据分析的要求,有四种主要的分析类型:描述性、诊断性、预测性和决策性。这四种业务分析提供了企业需要了解的所有信息,从企业的发展状况到为优化功能而采用的解决方案。
数据仓库项目是高度复杂的,从根本上讲是有风险的。在众多任务中,领导数据仓库团队的项目经理必须识别所有数据质量风险。这个过程的主要目标是记录与项目风险有关的基本信息。本文主要介绍如何避免其他数据仓库和BI项目所经历的以下四个常见错误,以便成功规划和实施新功能和能力。
在冠状病毒大流行之后,数字化转型变得更加重要。全球各地的企业都在努力从大数据中收集实时的运营洞察力,以提高盈利能力,提供卓越的客户体验,并遵守法规。 然而,以业务速度摄取和分析来自不同数据源的快速增长的数据量,却带来了巨大的挑战,尤其是对拥有传统核心基础设施的企业而言。
当今世界产生的数据量比以往任何时候都要庞大。IDC预测,到2025年,全球数据量将达到175zettabytes。管理这样的数据量为企业提供了提供增强业务服务的能力。然而,它需要包容性的知识和熟练的大数据分析能力。Python编程语言提供了大量的库来处理大数据。得益于Python的易读性和统计分析能力,Python在数据科学、人工智能、机器学习和深度学习中应用最为广泛。
即时数据流在大数据分析中的地位已经非常突出,实时数据管道工具也是如此。本文为您带来一份数据流工具的清单,这些工具适合进行数据驱动的决策。
如果你一直在使用数据库,你就会知道NoSQL是热门话题。主要是因为NoSQL在很大程度上填补了SQL相当难以填补的空白。传统上,SQL数据库的成本往往很高,从其只能垂直扩展,到数据库还没做出来就需要对模式进行大量的设计。因此,NoSQL就是为了对抗SQL而开发的,它可以水平扩展,也不需要使用Schema,但是是不是真的不需要Schema呢?本来就来探讨一下。
很多中小型公司认为,只有大公司才能买得起大数据驱动的解决方案,它只适合海量数据,而且价格昂贵。但是其实这已经不再是事实,有几场革命改变了这种状态。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@evget.com
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢
慧都科技 版权所有 Copyright 2003-
2025 渝ICP备12000582号-13 渝公网安备
50010702500608号