没有找到合适的产品?
联系客服协助选型:023-68661681
提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
翻译|行业资讯|编辑:李显亮|2020-01-14 11:34:44.843|阅读 208 次
概述:Aspose一直致力于研究用于执行文件间格式转换,对文件进行操作(例如创建、版本、操作等)的文件格式API。好消息来啦!专门用于Java平台识别光学标识并管理转换的API控件Aspose.OMR for Java首次公开发行啦!
# 界面/图表报表/文档/IDE等千款热门软控件火热销售中 >>
Aspose一直致力于研究用于执行文件间格式转换,对文件进行操作(例如创建、版本、操作等)的文件格式API。好消息来啦!专门用于Java平台识别光学标识并管理转换的API控件Aspose.OMR for Java首次公开发行啦!
Aspose.OMR for Java是一种可从多种图像格式识别光学标记,包括PNG,GIF,JPEG,TIFF,BMP的API。API将输出保存为CSV和JSON格式,并且可以在执行OMR操作时以文本格式显示结果。可点击下方按钮下载最新版体验。
识别扫描的图像和照片
准确率高
处理旋转和透视图像
从TXT文件生成OMR模板
识别来自测试,考试,问卷,调查的数据
将结果保存为CSV和JSON格式
接下来,让我们快速浏览一下上述Java API的功能,以了解如何识别各种图像格式的光学标记,以及如何从包含MCQ的调查,问卷或测试中捕获人类标记的数据。
Aspose.OMR for Java提供了从创建OMR模板到识别光学标记以捕获数据的完整功能集。该API支持通过简单的文本标记生成OMR模板文件或图像。您只需将模板的文本标记传递给API,它将为您生成模板。以下是OMR模板的示例文本标记。
我们可以简单地将文本标记保存在扩展名为.txt的文本文件中。完成后,可以使用以下步骤生成模板:
下面的代码示例演示如何使用Java从文本标记生成OMR模板。
String outputDirectory = "GenerationResult"; String[] GenerationMarkups = new String[] { "Sheet.txt", "Grid.txt", "AsposeTest.txt" }; String[] GenerationMarkupsNoExt = new String[] { "Sheet", "Grid", "AsposeTest" }; OmrEngine engine = new OmrEngine(); for (int i = 0; i < GenerationMarkups.length; i++) { // call template generation providing path to the txt file with markup GenerationResult res = engine.generateTemplate(GenerationMarkups[i]); // check in case of errors if (res.getErrorCode() != 0) { System.out.println("ERROR CODE: " + res.getErrorCode()); } // save generation result: image and .omr template res.save(outputDirectory, GenerationMarkupsNoExt[i]); }
输出结果:
为了在图像中执行OMR,只需要两件事–准备的OMR模板(.omr)和图像(用户填写的表单/工作表)就可以执行OMR。API支持以下图像格式的OMR:
以下是在图像中执行OMR的步骤:
下面的代码示例演示如何使用Java识别图像中的光学标记:
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; // initialize engine and get template processor providing path to the .omr file OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // images loop for (int i = 0; i < UserImages.length; i++) { // path to the image to be recognized String imagePath = UserImages[i]; System.out.println("Processing image: " + imagePath); // recognize image and receive result RecognitionResult result = templateProcessor.recognizeImage(imagePath); // export results as csv string String csvResult = result.getCsv(); String json = result.getJson(); // save csv to the output folder PrintWriter wr = new PrintWriter(new FileOutputStream(UserImagesNoExt[i] + ".csv"), true); wr.println(csvResult); }
可以通过在0到100之间定义一个自定义阈值来微调OMR结果。增大阈值会使API在识别答案时更加严格。可以在TemplateProcessor.recognizeImage()方法中将阈值设置 为第二个参数,如以下Java代码示例所示。
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; int customThreshold = 40; // initialize engine and get template processor providing path to the .omr file OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // images loop for (int i = 0; i < UserImages.length; i++) { // path to the image to be recognized String imagePath = UserImages[i]; System.out.println("Processing image: " + imagePath); // recognize image and receive result RecognitionResult result = templateProcessor.recognizeImage(imagePath, customThreshold); // export results as csv string String csvResult = result.getCsv(); String json = result.getJson(); // save csv to the output folder PrintWriter wr = new PrintWriter(new FileOutputStream(UserImagesNoExt[i] + ".csv"), true); wr.println(csvResult); }
在某些情况下,您可能需要使用不同的阈值重新计算OMR结果。在这种情况下,不必一次又一次地调用TemplateProcessor.recognizeImage(),而是可以使用TemplateProcessor.recalculate()方法配置用于自动重新计算的API,以提高图像处理效率。下面的代码示例演示如何实现OMR结果的重新计算。
String[] UserImages = new String[] { "Sheet1.jpg", "Sheet2.jpg" }; String[] UserImagesNoExt = new String[] { "Sheet1", "Sheet2" }; String outputDirectory = "Result"; String templatePath = "Sheet.omr"; // init engine and get template processor OmrEngine engine = new OmrEngine(); TemplateProcessor templateProcessor = engine.getTemplateProcessor(templatePath); System.out.println("Template loaded."); // Set custom threshold to use in recalculation // this value is in range (0 to 100) // represents the percentage of required black pixels on bubble image to be recognized // i.e. the lower the value - the less black pixels required for bubble to be counted as filled and vice versa int CustomThreshold = 40; // images loop for (int i = 0; i < UserImages.length; i++) { String image = UserImages[i]; String imagePath = image; System.out.println("Processing image: " + imagePath); // recognize image RecognitionResult result = templateProcessor.recognizeImage(imagePath); // get export csv string String stringRes = result.getCsv(); // save csv to output folder String outputName = UserImagesNoExt[i] + ".csv"; PrintWriter wr = new PrintWriter(new FileOutputStream(outputName), true); wr.println(stringRes); System.out.println("Export done. Path: " + outputName); // recalculate recognition results with custom threshold templateProcessor.recalculate(result, CustomThreshold); // get export csv string stringRes = result.getCsv(); // save recalculated results outputName = UserImagesNoExt[i] + "_recalculated.csv"; wr = new PrintWriter(new FileOutputStream(outputName), true); wr.println(stringRes); System.out.println("Recalculated result export done. Path: " + outputName); System.out.println(); }
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@evget.com
Iron Software 为.NET开发者提供了难得的“即插即用”组件体验,无论是做内部工具,还是开发商业软件,都能大幅提升你的开发效率与产品质量。这款宝藏控件,不妨你也来试试!
TestComplete通过与Git、Jenkins和Zephyr的深度集成,构建了一个完整的持续测试生态系统:从代码变更的智能感知到批量测试的自动化执行,再到测试管理的智能化分析,实现了测试流程的全链路自动化。这种端到端的集成方案不仅显著提升了测试效率和质量,更通过实时反馈和可视化管理,为团队提供了精准的代码质量洞察。
微服务架构带来了灵活性,但也让测试变得复杂:不同协议适配费时费力、服务频繁变更导致测试用例维护困难、依赖环境搭建和稳定更是令人头疼。这些挑战常常成为敏捷交付和质量保障的瓶颈。Parasoft SOAtest正是为应对这些复杂分布式系统测试难题而设计的平台。它通过三大核心能力,帮助团队更从容地驾驭微服务测试:
HOOPS SDK为增材制造软件开发提供了从CAD数据读取、模型处理、可视化到文档生成的完整技术栈。无论是桌面端的工业级打印控制系统,还是基于云的在线制造平台,开发者都可通过HOOPS快速构建稳定可靠、用户体验优良的3D打印软件。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@evget.com
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢
慧都科技 版权所有 Copyright 2003-
2025 渝ICP备12000582号-13 渝公网安备
50010702500608号